AreaMassProperties Properties |
The AreaMassProperties type exposes the following members.
| Name | Description | |
|---|---|---|
| Area |
Gets the area solution.
| |
| AreaError |
Gets the uncertainty in the area calculation.
| |
| Centroid |
Gets the area centroid in the world coordinate system.
| |
| CentroidCoordinatesMomentsOfInertia |
Moments of inertia with respect to centroid coordinate system.
X = integral of ((y-y0)^2 + (z-z0)^2) dm
Y = integral of ((z-z0)^2 + (x-x0)^2) dm
Z = integral of ((z-z0)^2 + (y-y0)^2) dm
where (x0,y0,z0) = centroid.
| |
| CentroidCoordinatesMomentsOfInertiaError |
Uncertainty in centroid coordinates moments of inertia calculation.
| |
| CentroidCoordinatesProductMoments |
Product moments with respect to centroid coordinate system.
| |
| CentroidCoordinatesProductMomentsError |
Uncertainty in product moments with respect to centroid coordinate system.
| |
| CentroidCoordinatesRadiiOfGyration |
Radii of gyration with respect to centroid coordinate system.
X = sqrt(integral of ((y-y0)^2 + (z-z0)^2) dm/M)
Y = sqrt(integral of ((z-z0)^2 + (x-x0)^2) dm/M)
Z = sqrt(integral of ((z-z0)^2 + (y-y0)^2) dm/M)
where (x0,y0,z0) = centroid.
| |
| CentroidCoordinatesSecondMoments |
Second moments with respect to centroid coordinate system.
X = integral of (x-x0)^2 dm
Y = integral of (y-y0)^2 dm
Z = integral of (z-z0)^2 dm
where (x0,y0,z0) = centroid.
| |
| CentroidCoordinatesSecondMomentsError |
Uncertainty in centroid coordinates second moments calculation.
| |
| CentroidError |
Gets the uncertainty in the centroid calculation.
| |
| WorldCoordinatesFirstMoments |
Returns the world coordinate first moments if they were able to be calculated.
X is integral of "x dm" over the area
Y is integral of "y dm" over the area
Z is integral of "z dm" over the area.
| |
| WorldCoordinatesFirstMomentsError |
Uncertainty in world coordinates first moments calculation.
| |
| WorldCoordinatesMomentsOfInertia |
The moments of inertia about the world coordinate axes.
X = integral of (y^2 + z^2) dm
Y = integral of (z^2 + x^2) dm
Z = integral of (z^2 + y^2) dm.
| |
| WorldCoordinatesMomentsOfInertiaError |
Uncertainty in world coordinates moments of inertia calculation.
| |
| WorldCoordinatesProductMoments |
Returns the world coordinate product moments if they were able to be calculated.
X is integral of "xy dm" over the area
Y is integral of "yz dm" over the area
Z is integral of "zx dm" over the area.
| |
| WorldCoordinatesProductMomentsError |
Uncertainty in world coordinates second moments calculation.
| |
| WorldCoordinatesRadiiOfGyration |
Radii of gyration with respect to world coordinate system.
X = sqrt(integral of (y^2 + z^2) dm/M)
Y = sqrt(integral of (z^2 + x^2) dm/M)
Z = sqrt(integral of (z^2 + y^2) dm/M)
| |
| WorldCoordinatesSecondMoments |
Returns the world coordinate second moments if they were able to be calculated.
X is integral of "xx dm" over the area
Y is integral of "yy dm" over the area
Z is integral of "zz dm" over the area.
| |
| WorldCoordinatesSecondMomentsError |
Uncertainty in world coordinates second moments calculation.
|