LengthMassProperties Properties |
The LengthMassProperties type exposes the following members.
Name | Description | |
---|---|---|
![]() | Centroid |
Gets the length centroid in the world coordinate system.
|
![]() | CentroidCoordinatesMomentsOfInertia |
Moments of inertia with respect to centroid coordinate system.
X = integral of ((y-y0)^2 + (z-z0)^2) dm
Y = integral of ((z-z0)^2 + (x-x0)^2) dm
Z = integral of ((z-z0)^2 + (y-y0)^2) dm
where (x0,y0,z0) = centroid.
|
![]() | CentroidCoordinatesMomentsOfInertiaError |
Uncertainty in centroid coordinates moments of inertia calculation.
|
![]() | CentroidCoordinatesProductMoments |
Product moments with respect to centroid coordinate system.
|
![]() | CentroidCoordinatesProductMomentsError |
Uncertainty in product moments with respect to centroid coordinate system.
|
![]() | CentroidCoordinatesRadiiOfGyration |
Radii of gyration with respect to centroid coordinate system.
X = sqrt(integral of ((y-y0)^2 + (z-z0)^2) dm/M)
Y = sqrt(integral of ((z-z0)^2 + (x-x0)^2) dm/M)
Z = sqrt(integral of ((z-z0)^2 + (y-y0)^2) dm/M)
where (x0,y0,z0) = centroid.
|
![]() | CentroidCoordinatesSecondMoments |
Second moments with respect to centroid coordinate system.
X = integral of (x-x0)^2 dm
Y = integral of (y-y0)^2 dm
Z = integral of (z-z0)^2 dm
where (x0,y0,z0) = centroid.
|
![]() | CentroidCoordinatesSecondMomentsError |
Uncertainty in centroid coordinates second moments calculation.
|
![]() | CentroidError |
Gets the uncertainty in the centroid calculation.
|
![]() | Length |
Gets the length solution.
|
![]() | LengthError |
Gets the uncertainty in the length calculation.
|
![]() | WorldCoordinatesFirstMoments |
Returns the world coordinate first moments if they were able to be calculated.
X is integral of "x dm" over the length
Y is integral of "y dm" over the length
Z is integral of "z dm" over the length.
|
![]() | WorldCoordinatesFirstMomentsError |
Uncertainty in world coordinates first moments calculation.
|
![]() | WorldCoordinatesMomentsOfInertia |
The moments of inertia about the world coordinate axes.
X = integral of (y^2 + z^2) dm
Y = integral of (z^2 + x^2) dm
Z = integral of (z^2 + y^2) dm.
|
![]() | WorldCoordinatesMomentsOfInertiaError |
Uncertainty in world coordinates moments of inertia calculation.
|
![]() | WorldCoordinatesProductMoments |
Returns the world coordinate product moments if they were able to be calculated.
X is integral of "xy dm" over the length
Y is integral of "yz dm" over the length
Z is integral of "zx dm" over the length.
|
![]() | WorldCoordinatesProductMomentsError |
Uncertainty in world coordinates second moments calculation.
|
![]() | WorldCoordinatesRadiiOfGyration |
Radii of gyration with respect to world coordinate system.
X = sqrt(integral of (y^2 + z^2) dm/M)
Y = sqrt(integral of (z^2 + x^2) dm/M)
Z = sqrt(integral of (z^2 + y^2) dm/M)
|
![]() | WorldCoordinatesSecondMoments |
Returns the world coordinate second moments if they were able to be calculated.
X is integral of "xx dm" over the length
Y is integral of "yy dm" over the length
Z is integral of "zz dm" over the length.
|
![]() | WorldCoordinatesSecondMomentsError |
Uncertainty in world coordinates second moments calculation.
|