LengthMassProperties Properties |
The LengthMassProperties type exposes the following members.
Name | Description | |
---|---|---|
Centroid |
Gets the length centroid in the world coordinate system.
| |
CentroidCoordinatesMomentsOfInertia |
Moments of inertia with respect to centroid coordinate system.
X = integral of ((y-y0)^2 + (z-z0)^2) dm
Y = integral of ((z-z0)^2 + (x-x0)^2) dm
Z = integral of ((z-z0)^2 + (y-y0)^2) dm
where (x0,y0,z0) = centroid.
| |
CentroidCoordinatesMomentsOfInertiaError |
Uncertainty in centroid coordinates moments of inertia calculation.
| |
CentroidCoordinatesProductMoments |
Product moments with respect to centroid coordinate system.
| |
CentroidCoordinatesProductMomentsError |
Uncertainty in product moments with respect to centroid coordinate system.
| |
CentroidCoordinatesRadiiOfGyration |
Radii of gyration with respect to centroid coordinate system.
X = sqrt(integral of ((y-y0)^2 + (z-z0)^2) dm/M)
Y = sqrt(integral of ((z-z0)^2 + (x-x0)^2) dm/M)
Z = sqrt(integral of ((z-z0)^2 + (y-y0)^2) dm/M)
where (x0,y0,z0) = centroid.
| |
CentroidCoordinatesSecondMoments |
Second moments with respect to centroid coordinate system.
X = integral of (x-x0)^2 dm
Y = integral of (y-y0)^2 dm
Z = integral of (z-z0)^2 dm
where (x0,y0,z0) = centroid.
| |
CentroidCoordinatesSecondMomentsError |
Uncertainty in centroid coordinates second moments calculation.
| |
CentroidError |
Gets the uncertainty in the centroid calculation.
| |
Length |
Gets the length solution.
| |
LengthError |
Gets the uncertainty in the length calculation.
| |
WorldCoordinatesFirstMoments |
Returns the world coordinate first moments if they were able to be calculated.
X is integral of "x dm" over the length
Y is integral of "y dm" over the length
Z is integral of "z dm" over the length.
| |
WorldCoordinatesFirstMomentsError |
Uncertainty in world coordinates first moments calculation.
| |
WorldCoordinatesMomentsOfInertia |
The moments of inertia about the world coordinate axes.
X = integral of (y^2 + z^2) dm
Y = integral of (z^2 + x^2) dm
Z = integral of (z^2 + y^2) dm.
| |
WorldCoordinatesMomentsOfInertiaError |
Uncertainty in world coordinates moments of inertia calculation.
| |
WorldCoordinatesProductMoments |
Returns the world coordinate product moments if they were able to be calculated.
X is integral of "xy dm" over the length
Y is integral of "yz dm" over the length
Z is integral of "zx dm" over the length.
| |
WorldCoordinatesProductMomentsError |
Uncertainty in world coordinates second moments calculation.
| |
WorldCoordinatesRadiiOfGyration |
Radii of gyration with respect to world coordinate system.
X = sqrt(integral of (y^2 + z^2) dm/M)
Y = sqrt(integral of (z^2 + x^2) dm/M)
Z = sqrt(integral of (z^2 + y^2) dm/M)
| |
WorldCoordinatesSecondMoments |
Returns the world coordinate second moments if they were able to be calculated.
X is integral of "xx dm" over the length
Y is integral of "yy dm" over the length
Z is integral of "zz dm" over the length.
| |
WorldCoordinatesSecondMomentsError |
Uncertainty in world coordinates second moments calculation.
|