Sphere

Sphere

Sphere

Constructor

new Sphere(center, radius)

Initializes a new sphere given center point and radius.
Parameters:
Name Type Description
center Array.<x, y, z> A center point.
radius double A radius value.

Members

center :Array.<x, y, z>

Gets or sets the center point of the sphere.
Type:
  • Array.<x, y, z>

diameter :double

Gets or sets the diameter for this sphere.
Type:
  • double

isValid :bool

Gets a value that indicates whether the sphere is valid.
Type:
  • bool

northPole :Array.<x, y, z>

Gets the point at the North Pole of the sphere. This is the parameterization singularity that can be obtained, at V value +Math.Pi/2.
Type:
  • Array.<x, y, z>

radius :double

Gets or sets the Radius for this sphere.
Type:
  • double

southPole :Array.<x, y, z>

Gets the point at the South Pole of the sphere. This is the parameterization singularity that can be obtained, at V value -Math.Pi/2.
Type:
  • Array.<x, y, z>

Methods

(static) decode()

...

closestPoint(testPoint) → {Array.<x, y, z>}

Returns point on sphere that is closest to given point.
Parameters:
Name Type Description
testPoint Array.<x, y, z> Point to project onto Sphere.
Returns:
Point on sphere surface closest to testPoint.
Type
Array.<x, y, z>

encode()

...

latitudeDegrees(degrees) → {Circle}

Computes the parallel at a specific latitude angle. The angle is specified in degrees.
Parameters:
Name Type Description
degrees double An angle in degrees for the meridian.
Returns:
A circle.
Type
Circle

latitudeRadians(radians) → {Circle}

Computes the parallel at a specific latitude angle. The angle is specified in radians.
Parameters:
Name Type Description
radians double An angle in radians for the parallel.
Returns:
A circle.
Type
Circle

longitudeRadians(radians) → {Circle}

Computes the meridian at a specific longitude angle. The angle is specified in radians.
Parameters:
Name Type Description
radians double An angle in radians.
Returns:
A circle.
Type
Circle

longitureDegrees()

...

normalAt(longitudeRadians, latitudeRadians) → {Array.<x, y, z>}

Computes the normal at a specific angular location on the sphere.
Parameters:
Name Type Description
longitudeRadians double A number within the interval [0, 2pi].
latitudeRadians double A number within the interval [-pi/2, pi/2].
Returns:
A vector.
Type
Array.<x, y, z>

pointAt(longitudeRadians, latitudeRadians) → {Array.<x, y, z>}

Evaluates the sphere at specific longitude and latitude angles.
Parameters:
Name Type Description
longitudeRadians double A number within the interval [0, 2pi].
latitudeRadians double A number within the interval [-pi/2,pi/2].
Returns:
A point value.
Type
Array.<x, y, z>

toBrep()

Converts this sphere is it Brep representation

toJSON()

...

toNurbsSurface() → {NurbsSurface}

Converts this sphere to its NurbsSurface representation. This is synonymous with calling NurbsSurface.CreateFromSphere().
Returns:
A nurbs surface representation of this sphere or null.
Type
NurbsSurface